The Expression and Functional Significance of Runx2 in Hepatocellular Carcinoma: Its Role in Vasculogenic Mimicry and Epithelial–Mesenchymal Transition
نویسندگان
چکیده
The transcription factor Runx2 has been reported to promote epithelial-mesenchymal transition (EMT) in many tumors. Vasculogenic mimicry (VM) is described as the mimicry of endothelial cells by tumor cells to form microvascular tubes in aggressive tumors. Galectin-3 has been reported to regulate cell invasion, migration, and VM formation; it could be regulated by Runx2. However, the relationship between Runx2, Galectin-3, EMT, and VM has not been studied in hepatocellular carcinoma (HCC). We examined Runx2 expression in 89 human HCC samples and found Runx2 expression was associated with VM. Clinical-pathological data analysis revealed that Runx2 expression was associated with a shorter survival period. Overexpression of Runx2 promoted EMT and enhanced cell migration, invasion, and VM formation in HepG2 cells. Conversely, the downregulation of Runx2 inhibited EMT and reduced cell invasion, migration, and VM formation in SMMC7721. Galectin-3 expression declined following the downregulation of Runx2 in HepG2 cells, and increased in SMMC7721 cells after Runx2 knockdown. We consistently demonstrated that the downregulation of LGALS3 in HepG2-Runx2 cells reduced cell migration; invasion and VM formation; while upregulation of LGALS3 in SMMC7721-shRunx2 cells enhanced cell migration, invasion, and VM formation. The results indicate that Runx2 could promote EMT and VM formation in HCC and Galectin-3 might have some function in this process.
منابع مشابه
Epithelial-Mesenchymal Transition and Inflammation in Head and Neck Squamous Cell Carcinoma
Head and neck squamous cell carcinoma (HNSCC) represents a large majority of cancers arising from the head and neck, especially the oral cavity. Despite advances in therapy, the five-year survival rate remains low due to the number of patients presenting advanced stages of the disease. The role of epithelial-mesenchymal transition (EMT) in tumorigenesis in HNSCC remains unexplored. The current ...
متن کاملSlug promoted vasculogenic mimicry in hepatocellular carcinoma
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumour cells to mimic the pattern of embryonic vasculogenic networks. Epithelial-mesenchymal transition (EMT) regulator slug have been implicated in the tumour invasion and metastasis of human hepatocellular carcinoma (HCC). However, the relationship between slug and VM formation is not clear. In the study, we demonstrated ...
متن کاملNotch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling
Hypervascularity is one of the main characteristics of hepatocellular carcinoma (HCC). However, the mechanisms of angiogenesis in HCC remain controversial. In this study, we investigate the role of Notch1 in angiogenesis of HCC. We found that Notch1 expression was correlated with formation of vasculogenic mimicry (VM) and expression of biomarkers of epithelial-to-mesenchymal transition (EMT) in...
متن کاملPhosphorylation of STAT3 Promotes Vasculogenic Mimicry by Inducing Epithelial-to-Mesenchymal Transition in Colorectal Cancer
Vasculogenic mimicry refers to the process by which highly invasive cancer cells mimic endothelial cells by forming blood channels. Vasculogenic mimicry is important for the invasion and metastasis of tumor cells in colorectal cancer. STAT3 was initially identified as a mediator of the inflammation-associated acute phase response. The phosphorylation of Signal Transducers and Activators of Tran...
متن کاملEpithelial-Mesenchymal Transition Regulated by EphA2 Contributes to Vasculogenic Mimicry Formation of Head and Neck Squamous Cell Carcinoma
PURPOSE Vasculogenic mimicry (VM) was related to invasion and metastasis of head and neck squamous cell carcinoma (HNSCC) patients. This study was designed to investigate the role of EphA2 in VM formation of HNSCC. METHODS The SiRNA technique was used to knock down the expression of EphA2 in vitro. The ability of cell migration and invasion were measured by transwell and wound healing assays;...
متن کامل